Augmented Reality in Medical & Pharma: Industry challenges in medical device manufacturing and how to tackle them with AR solutions

This editorial has been developed as part of the AREA Thought Leaders Network content, in collaboration with selected AREA members.


Corporations in the medical and pharmaceutical industry need to adhere to the highest standards of quality, with accuracy and precision being the keys to success. If organizations experience equipment errors or healthcare workers make mistakes, they not only put human life at risk but also incur significant consequences for payers, including financial and credibility loss. To reduce error rates and increase quality, businesses across the industry are turning to the latest technologies – including Augmented Reality (AR).

AR and VR technology is already being used and significantly improving processes in medical device manufacturing. This editorial discusses two major use cases in which AR solutions simplify workflows to reduce human error:

  1. Medical device assembly
  2. Production line changeover

Let’s take a closer look at exactly how AR technology can tackle key challenges in both cases, with the help of some first-hand insights from William Harding of industry leader Medtronic, recently interviewed by RE’FLEKT.

Key challenges in medical device manufacturing

Medical device manufacturing typically involves a variety of manual, semi-automatic and automatic processes which makes production particularly vulnerable to error – especially as large manufacturers need to employ the same processes across multiple facilities, often without standardization of production data. In addition, if there is a lack of training among operators it can increase the risk of mistakes made during manual tasks when medical equipment is assembled and configured.

William Harding, Distinguished Fellow at Medtronic, reveals which factors medical device manufacturers need to consider when introducing changes on the production floor:

“If I add a new process to a production line, many questions need to be addressed: How do I get the process to integrate seamlessly (e.g., communication protocols, data aggregation, and data transformation)? How do I accomplish that without using paper-based systems? The goal is to speed up efficiencies and reduce scrap while also reducing human error. When we create a new process in lean manufacturing, we need to establish the most ergonomic way for an operator to perform their tasks within a sterile environment. We also want them to complete these tasks in the most efficient way possible, while delivering a high-quality product. There are many factors to be considered.”

Prior to introducing a new manufacturing process, operators need to be trained on how to perform each step to ensure maximum efficiency and minimum error rates during production. William further explains how Medtronic originally used a cardboard replica of their manufacturing line for training purposes and what challenges came along with it:

“It used to take us two and a half weeks to build a cardboard set-up with five process stations. For one training session, we also needed at least eight to ten people off the production floor, who then weren’t engaged in manufacturing products while they were in training. It would cost us about $30,000 for one training effort with the cardboard set-up. We usually require five sessions in total to get everything right, and by the time we decide that everything is ready, we’re making changes five minutes later.”

Simplified training and operations with AR solutions

With AR technology, medical device manufacturers like Medtronic can not only manage the challenges listed above, but also benefit from significant operational improvements, as the following two use cases reveal.

1. Enhanced AR Training for device assembly and set-up 

Training around medical device set-up and configuration is traditionally based on Operating Procedure (OP) documentation that is not user-friendly. Extensive manuals, including complicated 2D diagrams and text-based instructions, make it challenging to find the right information quickly for device operators. Consequently, onboarding is time consuming and devices may be set up incorrectly and/or not used to their full potential.

Many leaders in the medical sector, including Medtronic, are turning to AR to train employees to set up and assemble their equipment. With results that decrease human errors by 90% and improve training times by 60% (see this white paper for further info) the reasons are obvious. AR training solutions allow device operators to visualize complicated OP documentation in a simple way with the right mixture of videos, text, and images that appear directly in context with the real object. This ensures that device operators always have training content available instantly on their mobile devices, tablets, or smart glasses, thereby experiencing fewer errors during device assembly and set-up.

William from Medtronic shares how AR training guides have replaced the cardboard replica during operator training at Medtronic:

“With content creation platforms like REFLEKT ONE, we can now create AR applications that allow operators to learn a new process by walking through engaging training guides on a tablet instead of using our cardboard model.”

2. Lean production line changeovers with AR-based procedures

When switching the production line from one product to the next, every minute of changeover time comes at the cost of missed revenue as production is down while teams rearrange, set-up, and configure the equipment for the next production cycle. Lean manufacturing strategies can help solve the dilemma to shorten downtime and increase the final output.

AR guidance during changeover procedures results in 40% fewer errors and a 25% faster changeover speed (see this white paper for further info). The interactive guides show operators the ideal state of the task at hand in AR next to the actual state. This way operators can always see what needs to be done as they are working. As augmented instructions guide operators through each step, the risk of error is ultimately reduced for all manual stages of the changeover.

This digitalized process is faster and more reliable as William confirms from his own experience creating AR solutions at Medtronic:

“Recently I created a solution to train operators on a manufacturing process for our Linq II battery bond (an implantable 2 lead EKG data recorder for patients). I made the content available to them online, where they could walk through it themselves and learn how to perform the process using gestures in AR. It’s a very fast and effective way of training because it saves resources and is so close to the real manufacturing environment.”

Outlook: The future of XR technology in the medical sector

These two use cases are great examples of how AR technology is already making a measurable difference in tackling key challenges in training and operations within medical device manufacturing. For the future, William forecasts a growing adoption of AR and ultimately Mixed Reality solutions at Medtronic as well as across the industry:

“Through the use of this technology in the future, I know that Medtronic will be able to more quickly understand the needs of patients, healthcare professionals, and payer’s needs, such that the lifecycles of innovation are reduced in addressing those needs. That same point can be made within the medical device manufacturing industry, specifically as it relates to product and process transfers as well as in the training of the individuals responsible for completing the assembly of those devices. However, it is my belief that AR and eventually MR technology will make the use of VR less important because users will prefer the more relatable MR environments.”

Back to Blogs +

Share Article: