Augmented Reality in the Aerospace Industry

There are many use cases for Augmented Reality in the aerospace industry and the leaders in this industry have a long history with the technology. In this post, we review some of the milestones and provide highlights of the recent AREA webinar.

In 1969, while working in the Human Engineering Division of the Armstrong Aerospace Medical Research Laboratory (USAF), Wright-Patterson AFB, Thomas Furness presented a paper entitled “Helmet-Mounted Displays and their Aerospace Applications” to attendees of the National Aerospace Electronics Conference.

Over 20 years later the paper was one of eight references cited by two Boeing engineers, Thomas Caudell and David Mizell. In their 1992 paper published in the Proceedings of the Twenty-Fifth Hawaii International Conference on System Sciences, Caudell and Mizell coined the term “Augmented Reality.” The degree to which the team drew from the work of Furness, who had started the Human Interface Technology Lab at University of Washington in 1989, is unclear but the focus of the Boeing team was on reducing errors when building wire harnesses for use in aircraft and other manual manufacturing tasks in aerospace.

While the technology was not sufficiently mature to leave the lab or to deliver on its potential at the time, they suggested that with an AR-assisted system an engineer would in the future be able to perform tasks more quickly and with fewer errors.

Proof of Concepts

Approximately fifteen years later, in 2008, Paul Davies, a research & development engineer at AREA member Boeing began working with Boeing Technical Fellow, Anthony Majoros. Together, Davies and Majoros picked up where the Caudell and Mizell paper left off. They used commercially-available technologies such as Total Immersion’s D’Fusion platform to show how technicians building satellites could perform complex tasks with Augmented Reality running on tablets.

Airbus has also been experimenting with Augmented Reality for over a decade. In this paper published in the ISMAR 2006 proceedings, Dominik Willers explains how Augmented Reality was being studied for assembly and service tasks but judged too immature for introduction into production environments. The paper, authored in collaboration with the Technical University of Munich, focused on the need for advances in tracking.

Since those proof of concept projects, AR technology has advanced to the point that it is being explored for an increasing number of use cases in the aerospace industry. In parallel with the expansion of use cases, the pace of applied research into AR-enabling technology components has not abated.

Augmented Reality in Aerospace in 2016

While today AR may not be found in many aerospace production environments, the promise of the technology to increase efficiency is widely acknowledged.

On February 18, David Doral of AERTEC Solutions, Jim Novack of Talent Swarm, and Raul Alarcon of the European Space Agency joined Paul Davies and me to discuss the status of Augmented Reality in their companies and client projects.

Each participant described the use cases and drivers for Augmented Reality adoption. For Boeing, the key metrics are reduction of errors and time to task completion. Use cases include training and work assistance. AERTEC Solutions, which works closely with Airbus, and Talent Swarm are both focusing on use cases where live video from a head-mounted camera can bring greater understanding of a technician’s context and questions, and permit more rapid analysis and resolution of issues.

The European Space Agency sees a variety of use cases on Earth and in space. Inspection and quality assurance, for example, could benefit from the use of Augmented Reality-assisted systems.

Turbulence Ahead 

During the discussion, webinar panelists explored the obstacles that continue to prevent full-scale adoption. In general, most barriers to adoption can be considered as technological in nature. But there are also significant obstacles stemming from human factors and business considerations. We also discussed the degree to which other industries may be able to apply lessons learned from aerospace.

To learn more about the state of AR in the aerospace industry, please watch the webinar archive.

Do you have use cases and projects that you would like to share with the AREA and our audiences? Please let us know in the comments of this post.

 




Connecting Experts and the Field with XMReality

AREA members have a great deal of experience with implementing enterprise AR projects. We sat down with Niklas Rengfors, VP of Sales at XMReality, to learn how his company’s solutions and approach to AR introduction are helping to improve field service organizations with advanced remote assistance technologies.

What types of companies are using your solutions today?

We have the privilege to work with companies like Tetra Pak, Wärtsilä, Bombardier and Bosch Rexroth who have large, geographically dispersed field service organizations. Service professionals are called upon to perform routine service but sometimes they encounter situations that they don’t expect. Our systems can also be used to help those in two factories or two service centers visualize conditions and support one another using a live video enhanced with Augmented Reality.

XMReality_tablet

What are the reasons these customers have chosen to work with XMReality as a supplier?

One important factor is that we focus on industrial users, mainly asset-heavy companies with a worldwide support commitment and provide all the hardware, software and services they need to deploy for remote assistance. Since our standard solution is truly “plug and play,” they can quickly begin to get experience and results. Then we collaborate with our customers in order to provide additional Augmented Reality functionality.

How has the employee performance in the workplace where you’ve introduced Augmented Reality been impacted?

We always work with a customer to put a business case together before we know the size of the deployment and the investment required. Working with service organizations, they monitor a lot of metrics. For example, they know precisely how much time they spend travelling, how much of the service they provide is under warranty, etc.
The most popular KPIs are

  • First time fix ratio
  • Travel costs
  • Manhours to complete a task
  • Uptime on the asset/machine

What is your company’s recommended approach to AR introduction? Are there steps or a model/method you follow?  

It is very important to have a plan and to follow the plan when new technology is being introduced. We have developed our own methodology. XMWork is a project planning framework we provide for both proof of concepts and also roll-outs, on which we collaborate with the customer.

Do you get involved in the design of the content that will be used in the introduction project/pilots?

Yes, that’s part of our full turnkey service. It is important to align the customer expectation with the technical possibilities and sometimes the customer does not have the skills or tools in-house to make the changes that are required.

How is data prepared for your customer projects?

Once the customer identifies the data they want to use, in meetings and sometimes in workshops, they provide it to us. Our engineers will then modify and enhance it for use in remote assistance using our technology. Sometimes this involves breaking the information down into smaller parts. Sometimes we need to prepare an animation or illustration. It depends on the project and the data we are provided.

What is the profile of a typical user who performs the selected tasks using your product? Are they highly trained professionals?

The users of our systems are technicians and field engineers, so-called “blue collar workers.” There’s little training required for our solution so users don’t need special certification for that.

Do you study project risks with the customer or project leader?

Yes, it is important that customers share and decide the risk level that is acceptable. We see in some cases where smart glasses are worn and might require extra precautions. For example, the person using the glasses needs to detect potential danger such as forklifts in the vicinity. Also some technicians need to climb into machines so they must see where they put their feet. These are questions that typically emerge which we are evaluating project risks.

Do your customers perform user studies prior to and following the use of the XMReality system?

Absolutely! Customers prepare a business case to get funding prior to the project but then they must update these calculations once they have more experience with the technology and use cases. It is very important for us and the customer to study acceptance rates and we frequently help the customer in this study or in creating the business case.

What are the attitudes of those in the workplace where AR projects are successfully introduced?

It depends a lot on the personality and age of the user. Younger people tend to adopt new technology more quickly. Others are a bit more conservative when asked to use new technology. When the user sees the efficiency increase, though, even the more skeptical ones are eager to adopt this type of technology.

LikeBeingThere

Considering the three ingredients of enterprise AR (hardware, software and content), what are the components of the system(s) you offer?

Core in our offering is the software. Customers are able to use their own devices but we also offer our own hardware, hands-free displays that we call “video goggles” and also tablets. For some, hands-free operations is of big importance, for some not. We can also provide accessories such as tool belts in order to improve accessibility of all the tools and technologies technicians require.

What are the greatest challenges you face in current introduction projects?

At this time, it’s quite a challenge to find and secure the right project sponsors. Then we have to support them to obtain project funding and a qualified project manager. We collaborate and consult a great deal to make sure everyone is comfortable with the project scope and that the solutions we offer will meet or exceed the expectation of the project.

What are the future plans/next steps for your company?

We are continually developing our Remote Guidance solution and also expanding the type of Augmented Reality projects we can do. Part of this requires our establishing partnerships with manufacturers of smart glasses so that the customer’s requirements are satisfied. We are always interested in meeting new potential partners and working with them to bring more complete solutions to our customers.




AREA Members Accelerating Success with Augmented Reality

Augmented Reality offers tremendous opportunity for organizations to improve workforce productivity and reduce human error through increased contextual awareness and guidance. Whether implemented on a head-mounted display, on a tablet or through a stationary system, AR can deliver and collect information for a myriad of applications including training, manufacturing, field service and warehouse logistics.

It is an exciting time to join and participate in the AR ecosystem. Many companies are jumping in. Some are making tremendous advancements in wearable technology through miniaturization. Innovation at the silicon level is lowering power consumption and processing. Others are focusing on improvements in computer vision. Mobile systems including phones, tablets, watches and glasses are becoming more interconnected and integrated, and smart fabrics present the potential for a fully integrated mobile augmented human.

Truths are Difficult to Accept

Progress is being made but significant challenges to the effective development and deployment of AR within the enterprise environment remain. And, unfortunately, the hype around AR and the initial example demonstrations (and concept videos) have created the perception that AR is ready to go and can be easily implemented and deployed.

In truth, many technical issues still need to be solved to enable successful implementation and widespread use of AR for extended periods of time. Organizational issues including culture, security and safety are other significant barriers that must be addressed. Most current AR examples are custom developed for specific, focused applications with highly controlled conditions. And, the AR tools and technology provider and developer ecosystems are still immature. The path to AR success is not obvious.

We Are Working Together

The AREA is here to address these issues among others, and to create an environment for organizations—large and small—to learn, share and accelerate the adoption of AR in the enterprise.

Within the AREA, member organizations from around the world have committed to sharing their experiences and challenges in a collegial atmosphere to solve complex technical and implementation problems. AREA members represent a unique blend of AR end users, systems integrators, content developers, and technology providers as well as not-for-profit research centers and academic organizations from multiple industries. Through a combined program of thought leadership, education and outreach, best practices development and communication, and technology and implementation research, AREA members are actively building the community and knowledge base that will ensure successful implementation of AR-enabled information technology environments across the enterprise.

Meetings Make Member Collaboration Tangible

By joining the AREA you will become part of a global AR ecosystem. Our shared vision for the potential of enterprise AR infuses our member meetings, like the one in Houston on October 22. We are learning and sharing best practices. We collaborate to define the best problem-solving research, and to support workforce development.

As President of the AREA and as a Sponsor Member, I am witnessing, firsthand, the level of knowledge sharing and exchange across member organizations. It is clear to me that the AREA is the only organization that provides this opportunity for AR technology providers, developers and customers.

If you didn’t get to our recent member meeting, then this website is the best place to learn more about enterprise Augmented Reality and the benefits of joining the AREA. I invite you to take the next step by contacting me or Christine Perey, AREA’s executive director, to discuss how you can contribute and participate.

We look forward to welcoming you and collaborating with you at a future meeting!

Carl Byers
AREA President
Chief Strategy Officer at Contextere




Augmented Reality Developer Options after Metaio

This post originally was published in French on augmented-reality.fr.

Just before summer, we launched a survey to better understand the strategies of Augmented Reality developers following Metaio’s sudden change in circumstances. This blog post presents the results of our survey and our interpretations.

 

AR Dev Options After Metaio 1

We launched the survey in mid-June and left it open over the summer of 2015. There was no specific respondent selection and therefore we cannot speak of any representative sample. However, with 63 responses, approximately 30 to 50% of whom were English speakers,  we decided that the dataset was sufficient to be representative.

First, we present the results of the survey. We then offer our interpretations.

Metaio Product Distribution

Options 8

 

Respondents were mainly users of Metaio’s SDK, and slightly more than half were users of Metaio Creator. The Continuous Visual Search (CVS) tool is used relatively little by our sample. Although it is not easy to fully know respondents’ use of Metaio tools, we can assume that the majority of respondents work in or near development because only 2 of the 63 respondents exclusively use Metaio Creator.

The Impact on Business

 

AR Dev Options After Metaio 2

 

 

AR Dev Options After Metaio 3

The impact of Metaio’s cessation of its offers on the developers’ business is important, even if 16% of respondents do not see the effects. While 40% of respondents said they have alternatives to Metaio products, 34% said they do not.

Open Source Solutions

 

AR Dev Options After Metaio 4

The use of an Open Source alternative to avoid the current situation is mixed. Although the survey was not specific about the capabilities of the offering, sixty percent of the respondents thought they would consider using an open source option, but a quarter of respondents remained uncertain.

Software Development Kits

 

AR Dev Options After Metaio 5

Not surprisingly, developers responded that, alone or in combination, Vuforia and Wikitude were the best alternatives to the Metaio SDK. Other proposed alternatives included ARToolkit, Catchoom and ARmedia. However, it is important to note that the third most common answer among respondents was “I don’t know.”

Metaio Creator

 

AR Dev Options After Metaio 6

Presently it seems that the vast majority of users have not found an alternative for Metaio Creator. Wikitude Studio is popular but Layar Creator,  though popular one or two years ago, no longer seems a viable alternative. It is surprising not to find Aurasma in the options considered by survey respondents.

Metaio Continuous Visual Search

 

AR Dev Options After Metaio 7

The results concerning Metaio CVS proved difficult to interpret as few people use it. Although Vuforia Cloud Recognition gained slightly more traction than other proposed alternatives, CVS users are much more divided on alternatives overall.

Open Comments from the Survey

Comments we received from respondents raise a few salient points.  In particular, Metaio’s technical expertise and advanced solutions were noted. Despite Wikitude and Vuforia having the same capabilities, there is currently no product in Metaio’s class.

We also see bitterness against Apple as well as an awareness of the potential fragility of other alternatives.

General Remarks

Today there is no obvious miracle solution to take Metaio’s place. The impact of the company’s change in circumstances on developers clearly demonstrates the overall fragility of the global Augmented Reality ecosystem. It is rather surprising to me that a third of respondents have no viable alternatives to Metaio technology. Rumors of Vuforia’s sale by Qualcomm may make the situation even more complicated in the coming months.

Paradoxically, these uncertainties do not help in the establishment of an Open Source solution. Although half of respondents believe this would be a good thing, a quarter remains uncertain. After discussions with several companies specializing in Augmented Reality, I felt a certain reluctance to support an open source system, primarily due to fear of losing an advantage in terms of technical prowess. There is much to say about this and I plan to prepare a more complete article in the coming weeks. In fact RA’pro will launch an invitation for a debate on this topic via web conference in the near future.

Returning to alternative tools, there is not a lot of surprise in seeing mention of the major market players: Vuforia, Wikitude, ARToolkit, ARmedia, Catchoom, etc. I am personally amazed at the few mentions of Layar, which seems to be a relatively major player in the AR print arena. However, it is true that the absence of a freemium model does not facilitate adoption by small businesses. The total absence of Aurasma and Total Immersion in the responses was also surprising.

As a final note, no one really knows if Metaio’s place can be taken since Apple has made no statement on the future of the product. We can however, presume that Metaio technology will be integrated in future products and will, therefore, lose the cross-platform nature that made Metaio products successful.

What do you think? Please leave your comments below.




The AREA Balances Vision and Pragmatism

The AREA has a vision and, at the same time, we must remain pragmatic. Let me explain.

We’re all familiar with the myths about the industrial revolution: it happened overnight, right? Coal leapt out of the ground and formed coke. Iron became steel and the rest is history. Then, 100 years later, in the late-20th century, computers profoundly changed what people could do with their knowledge and, using networked computers, silicon-driven industries revolutionized how people communicate and how just about everything—human and machine—works.

VisionIn the future, businesses will experience another transformation that will have a big impact on workers who have spent far less time behind computer screens than knowledge workers. Largely without the assistance of silicon-based computational devices, they move themselves and materials around; they build, transform, maintain, use, repair and even take apart objects in the physical world.  They are pragmatic when it comes to the introduction of new technologies.

Soon, the procedures these workers need to follow will leap into their line of sight and at their fingertips, endowing them with the knowledge of those who benefited from the previous cyber revolution.

Improving Workplace Performance

Augmented Reality-assisted enterprise systems will drive significant improvements in many operations, as measured by lower costs and higher productivity. Those whose work requires guidance, decision support or collaboration concerning objects and places in the physical world will, through contextually relevant visualization of information: 

  • Be more productive
  • Operate more safely
  • Consistently comply with all policies and procedures
  • Perform tasks with the lowest possible number of errors

But first, some innovative leaders have to take risks and make investments that may, as when Matthew Boulton continued to finance the research of James Watt, appear imprudent.

Who Are We Talking About?

The steam engine and industrial revolution did not happen overnight. It was only many years after entering into partnership with entrepreneur Matthew Boulton that the concepts and hard work of James Watt produced significant efficiency improvements by comparison with the earliest model steam engines.

The AREA recognizes that many investors will take risks before Augmented Reality is mature. There will also be many engineers whose brilliance of conception and practical know-how will be needed to improve the productivity of workers.

Who Are We Talking To?

We’re talking to you: the developer, the business manager, the IT group, the learning department manager, the innovation group, and the executive office.

You each need different arguments to persuade you of the value of investing in enterprise Augmented Reality.  Our content and informational programs are being designed to match the needs of these diverse groups of stakeholders.

Our target audiences are not limited to those in enterprises that are implementing Augmented Reality for their internal operational needs. We also recognize target audiences in organizations that provide goods and services to enterprise customers. These include the providers of core enabling technologies and vendors of enterprise IT hardware and software, as well as systems integrators of many kinds.

predict future

Pragmatic, Like Our Members

Everyone wants to quickly achieve goals towards AR introduction. But hype builds up unrealistic expectations. Disappointed decision makers may not shoulder the risks again.

In order to help all these different groups present their offers and, on the other hand, understand what they are acquiring or introducing into their businesses, the AREA is pragmatic.

The AREA’s programs are designed to simply and consistently:

  • Reduce the myths and mysteries associated with Augmented Reality
  • Help customers to establish reasonable expectations (where they can be met with existing technologies)

Pragmatism with practical information—not  hype—is as important as vision.




Introducing the AR in Strategic Enterprise Sessions

In contrast to companies that are responding and reacting to changing conditions without a plan, strategic enterprises systematically apply the best planning and management processes.

A strategic enterprise successfully integrates emerging and mature systems to improve processes and outcomes. Managers in strategic enterprises factor in their existing information systems development and maintenance efforts, as well as any new technology introduction when guiding their businesses towards the achievement of goals.

ARiseBlogPost

The AREA and AR in Strategic Enterprises

AREA members met with strategic enterprise managers in Sheffield on July 1. The focus of the event was on how to introduce and integrate AR into strategic enterprises.

Over the course of the day, AREA members shared their experiences and recommendations for choosing use cases, preparing data for use in AR experiences, choosing and training users for AR pilots and introduction activities, measuring impacts and managing risks associated with AR introduction.

screenshot_257

The AREA’s Value Added

The sessions are a perfect example of AREA members demonstrating their thought leadership and collaborating to share knowledge with others. In addition to the valuable discussions made possible during the networking and panel sessions, the recordings of the presentations are now available for viewing on YouTube.

Through the ARise event and its sessions, the AREA and its members are accelerating AR adoption in the corporate environment. As Executive Director of the AREA, I am proud to present the 11-session series and hope you will gain additional insights into the ways Augmented Reality can benefit your enterprise.




Augmented Reality Can Increase Productivity

Technological and cultural shifts that result in enhancements in manufacturing tend to increase complexity in products and processes. In turn, this complexity increases requirements in manufacturing and puts added pressure on organizations to squeeze out inefficiencies and lower costs where and when feasible.

This trend is acute in aerospace, where complexity, quality and safety require a large portion of final assembly to be done by humans. Corporations like AREA member Boeing are finding ways to improve assembly workflows by making tasks easier and faster to perform with less errors.

At ARise ’15, Paul Davies of Boeing presented a wing assembly study in collaboration with Iowa State University, showing dramatic differences in performance when complex tasks are performed following 2D work instructions versus Augmented Reality.

A Study in Efficiency

In the study, three control groups were asked to assemble parts of a wing, which required over 50 steps to assemble nearly 30 different parts. Each group performed the task using three different modes of work instruction:

  • A desktop computer screen displaying a work instruction PDF file. The computer was immobile and sat in the corner of the room away from the assembly area.
  • A mobile tablet displaying a work instruction PDF file, which participants could carry with them.
  • A mobile tablet displaying Augmented Reality software showing the work instructions as guided steps with graphical overlays. A four-camera infrared tracking system provided high-precision motion tracking for accurate alignment of the AR models with the real world.

Subjects assembled the wing twice; during the first attempt, observers measured first time quality (see below) before disassembling the wing and having participants reassemble it to measure the effectiveness of instructions on the learning curve.

Participants’ movements and activities were recorded using four webcams positioned around the work cell. In addition, they wore a plastic helmet with reflective tracker balls that allowed optical tracking of head position and orientation in order for researchers to visualize data about how tasks were fulfilled. Tracker balls were also attached to the tablet (in both AR and non-AR modes).

First Time Quality

To evaluate the ability of a novice trainee with little or no experience to perform an operation the first time (“first time quality”), errors are counted and categorized. The study revealed that tablet mode yielded significantly less errors (on average) than desktop mode.

In the diagram above, the blue bar represents the first assembly attempt and the green bar is the second. The diagram also shows that subjects using Augmented Reality mode made zero errors on average per person, indicating the potential of AR to improve first time quality for assembly tasks.

In the diagram above, the blue bar represents the first assembly attempt and the green bar is the second. The diagram also shows that subjects using Augmented Reality mode made zero errors on average per person, indicating the potential of AR to improve first time quality for assembly tasks.

Rapid assembly

ARIncreaseProductivity-graph2

This diagram measures time taken to complete tasks by mode, both the first and second time. AR-assisted participants completed tasks faster the first time than with other modes

Conclusions

Overall the study witnessed an almost 90% improvement in first time quality between desktop and Augmented Reality modes, with AR reducing time to build the wing by around 30%. Researchers also found that when instructions are presented with Augmented Reality, people gain a faster understanding and need less convincing of the correctness of tasks.

Bottom line is that this study shows and quantifies how complex tasks performed for the first time can benefit from Augmented Reality work instructions. If the task is done with fewer errors and faster, the impact on productivity is highly significant.

Where can Augmented Reality make an impact in your organization?




ARLU—the Right Event at the Right Time

EPRI is proud to collaborate with the AREA on the first ever Augmented Reality in Leading-Edge Utilities (ARLU) this July, where we will lead the industry to discern a disruptive technology and anticipate and solve issues through collaborative effort. In fact, ours is the only industry we know of where Augmented Reality as a disruptive innovation is being openly discussed. This isn’t going unnoticed.  Other industries are pointing at utilities and saying “Hey, look what they’re doing.”  Utilities are rarely perceived as having an active role in exciting new trends.

Three in One

The ARLU event is, in fact, three events in one.  First, it’s a meeting where EPRI and utilities industry representatives will present their Augmented Reality research and projects to vendors developing applications for the utility industry.  Vendors will see where utilities are placing emphasis in their development efforts and learn about the issues they‘re encountering.  Requirements such as size, weight and battery life of wearable technologies will be explored through the presentations, and will impart to participants a deeper understanding of the issues facing introduction of Augmented Reality in utilities.

Next, vendors will present their latest technologies for immediate feedback from industry experts. Not all technologies fit every utility situation and discussions around fit for purpose of presented technologies will be lively and informative. Finally, a workshop on gaps in existing standards will bring multiple perspectives to the problems of creating safe, comfortable and interoperable AR experiences in the utility space. 

Thought Leaders

Having subject matter experts together in one room is the one of the key objectives of this meeting. As we’ve been preparing the ARLU event, we’ve invited some of the brightest people in the utilities and utilities software industry to mix with thought leaders in Augmented Reality. We expect that the impact will last much longer than the two days in July because new ideas will emerge in the weeks and months that follow as the participants who meet in Charlotte continue to develop relationships.

We expect to capture some of the ideas these thought leaders generate and to share the outcomes of discussions with the broader community so that many others can also benefit.

Time is Right

We feel this is the right time for such a conference. Today, judging a technology for what it can do right now is the wrong way to look at it.  Advances occur almost daily and it’s better to first define what’s needed to build a future state of the technology. That’s where Augmented Reality is today. Practical applications are just now being introduced but an explosion of functionality is coming. By the time the average person notices the ubiquity of Augmented Reality, many of the issues we are going to discuss in Charlotte will already have been settled.

Wearable technologies with Augmented Reality are at a stage where real utility applications are possible. At the same time, shifting demographics at utilities are bringing in younger, less experienced workers—as older, more practiced workers are leaving. There needs to be an orchestrated “changing of the guard” where institutional knowledge, gained by years of hard work and experience, is transferred to a younger, more tech-savvy generation. The technologies presented at ARLU will deliver remote expertise and put information at the fingertips of crews composed of less seasoned individuals.

The wise man says it’s better to act on a lightning flash than wait to hear the thunder. That’s why we planned this event in 2015 and look forward to seeing many of the readers of this blog at the first ARLU event.




Why Augmented Reality and Collaboration Make for a Safer and Better World

Augmented Reality (AR)-enabled systems show a mechanic how to repair an engine, or perhaps in the future will guide an inexperienced surgeon in a delicate heart operation. In my opinion, it’s when AR is combined with human collaboration that the magic begins. AR will soon work its way into a variety of applications that are bound to improve our lives, but more importantly, I am convinced it’s to become a catalyst for greater human understanding and world peace.

Augmented Reality Can Bring Us Closer

Everyone’s heart raced when Jake Sculley, the wheel chair-bound Marine in the movie Avatar, first connected his thoughts to those of his avatar, walked and then ran. His mission was to infiltrate the society of the natives, learn their customs and, having gathered that information help destroy their world. Of course, we all know how the story ends…It’s difficult to do harm to those we know. The first step in Hitler’s campaign to eliminate those he considered unworthy was to convince his followers that the others were less than human. In fact, this is a universal technique involved in incitement to violence against another group. It is only when we finally get to know someone that, even if we don’t agree, we can begin to understand and care about them.

Sharing Experiences

AR allows a user to see an enhanced view of reality, placing graphic images and 3D models over the real background. This will be great for building and repairing things by ourselves, but when we combine that capability with modern telecommunications, remote users will be able to participate in those processes with local users in real time, and appear to the wearer of the glasses as if standing alongside them. We won’t just see our grandkids in a Skype screen; we will take them with us on new adventures around the world or in our backyard. An astronaut in space will literally see the hand of the equipment specialist on earth pointing to the board to be replaced as they speak.

Gutenberg changed the world because the printed page could easily display the manuals that apprentices used for learning the trades that freed them from the fields. Radio and then television added sound, motion and recently 3D to the flood of information. Telecommunications has brought the cost of distributing it to practically zero. Now AR combines these capabilities and creates an infinite number of parallel worlds that you may create and visit, as well as acquire skills in from one-on-one instruction. It’s the closest thing to teleportation this side of Star Trek.

Non-verbal communication is said to account for between 55 and 97% (depending on the study) of communication between people. AR will provide practically the same information due to its enabling of “belly to belly” proximity. You will be able to virtually sit in a conference room and interact with other remote participants, watch a theater performance in your living room or tag along with a friend on an exotic trip to a foreign land. That friend will be able to see you, too.

New Ways of Displaying Information

Talk about disruptive. This is downright neutron bomb material. Why do you need a laptop or tablet when you see the screen suspended in mid-air, with the glasses projecting a keyboard on any surface? Gone are large-screen TVs, when everyone sat stationary watching the game from the same angle. Why wouldn’t they prefer it in perfect 3D? Forget glass cockpits in airplanes; why not have all the instruments projected in your field of view? How about infrared images of deer or pedestrians in fog or at night shown on the windshield of your car, to avoid hitting them in time?

Augmented Reality and Collaboration

But, again collaboration use cases will take the cake. The level of empathetic bonding that occurs when you’re in the room with another person will make current social messaging seem like sending smoke signals. Professionals in other countries will virtually know you and work together on projects as I am proposing using the Talent Swarm platform. Along with such proximity-enabled work will come a better understanding of other countries and cultures.

Collaboration is key, but it can’t happen at scale if everyone needs to buy and use exactly the same hardware and software. Collaboration across networks and companies as diverse as the places where humans live and work builds upon deep interoperability. Interoperability with existing and future systems will require a globally agreed-upon set of open standards. We will work within the AREA to strongly advocate for interoperable systems and push for global standards together with other AREA members. Once we have collaborative AR platforms, the benefits of this technology will rapidly serve all people of the world. Becoming an AREA founding sponsor member is, for Talent Swarm, not only common sense, but putting a stake in the ground, demonstrating our leadership for a more productive and peaceful world. We will avoid embarking on another wasteful battle such as VHS vs. Beta, nor allow a single company to reduce the opportunities or lock others out. Christine Perey, Executive Director of AREA, refers to it as our mandate: to ensure that an ecosystem of AR component and solution providers is in harmony with the customers’ needs, and able to deliver the diversity and innovation upon which economic success is based.

Path to the Future

With a concerted group goal centered on the advancement of AR, and with many technological developments both in the works and being introduced at an increasingly fast pace, we will one day look back to 2015 and say, how did we ever get along without Augmented Reality?




The IEEE Standards Association at Inside AR 2014

This is a guest post by the IEEE Standards Association (IEEE-SA), on their participation at the 2014 edition of InsideAR in Munich.

There has been a lot of hype about Augmented Reality, and concrete examples help us all to grasp how far we have come and how much is yet to be done in the field. For this reason, we at IEEE Standards Association (IEEE-SA) were delighted to see all the new technologies showcased at InsideAR 2014. We also enjoyed talking with the diverse crowd of visitors to our booth, which included folks from wearable tech, mobile software and business development, research, academia and marketing.

Many visitors were aware of IEEE-SA’s activities and were interested in knowing more about our “Bringing Standards to Life” AR app experience, showing how IEEE standards (with focus on IEEE 802® standards) impact their daily lives. Some were interested in IEEE-SA’s role in AR, and whether there were any current standards available.

IEEE believes AR is an enabling tool for a number of technologies, including the broad tech that IEEE serves. – Mary Lynne Nielsen, Global Operations and Outreach Program Manager at IEEE Standards Association

Tools for Expanding Augmented Reality Markets

At IEEE we help companies interested in AR to plan for the future. For example, we offer tools for business planning, such as our complimentary copy of IEEE Scenarios for AR in 2020. Also, the standards-development process offers a path for engineers to realize the full potential of Augmented Reality, as the adoption of open standards fosters innovation and market growth through economies of scale and wider interoperability.

https://www.youtube.com/watch?v=OszYuLx_Onk

We lead campaigns and projects to advance open and interoperable AR. This makes sense, given the scope of IEEE expertise across technology areas that contribute to AR and the proven track record of IEEE for serving as a facilitator and catalyst in widely adopted technologies, such as networking communications and the smart grid.

The IEEE-SA offers a platform for developers and users to innovate for open and interoperable AR. For example, the IEEE-SA’s standards-development process is based on broad global participation and consensus—in alignment with the “OpenStand” principles for global, open, market-driven standards. And, indeed, a wide variety of IEEE standards and projects relevant to AR already exists today.

To facilitate participation from emerging AR domains, the IEEE also explores the establishment of new study groups, projects or standards based on requirements for all segments of the AR ecosystem. To that end, an IEEE-SA Industry Connections activity has been launched to, in part, identify use cases, glossaries, and best practices in the AR technology space.

Furthermore, through participating in meetings of the AR Community and conferences like InsideAR, the IEEE-SA proactively engages with other leaders around the world to encourage global AR market growth.

Conclusion

Overall, we found InsideAR 2014 to be a well-organized and very enlightening event, shedding light on the endless opportunities in the AR space, as it relates to technology overall. There were great sessions covering a range of topics that could provide inspiration across many other industries. We’re looking forward to next year’s event.