1

Magic Leap partners with Geopogo on Augmented Reality solution for architecture and design

Geopogo is a California-based 3D design software company that is working to transform the design and construction process. The company’s software allows architects and designers to create renderings and a virtual reality (VR) or augmented reality experience in minutes by importing existing CAD models or building directly with the Geopogo 3D creator tool.

Now, with Geopogo’s software on Magic Leap’s AR headset platform, the interaction of digital content with the physical world will help to bring architectural designs to life, according to the companies. “This is a phenomenal opportunity to make architectural design understandable and accessible to project clients, city officials, and the general public,” said Geopogo’s Creative Director, Michael Hoppe.

According to Magic Leap, the American Institute of Architects, San Francisco (AIASF) utilized the partnership’s technology as part of its ‘Shape Your City’ campaign, an ongoing fundraising effort to build its new headquarters in the Bay Area’s new Center for Architecture + Design. The organization also sought to fund expanded architecture-focused tours, exhibitions, educational programs, and events for people of all ages.

As a result, AIASF hosted on-site building tours to build excitement and engagement for the project from the architectural community and the public, and offered tour participants a 3D virtual model of the future Center. The integration of AR technology during the building tours allowed for a more interactive, transparent, immersive, and exciting way to visualize what the space will look like, even before construction has started.

“The power of the AR experience succeeded in inspiring donors to contribute much-needed construction funding for the project, as hoped for by the non-profit organizations. We were especially happy to see how the AR experience brought so much delight to the faces of the non-profit Board, the organization members, and members of the larger community,” said Dave Alpert, Geopogo CEO and Cofounder. 

“The AR model has allowed our project partners, Board members, potential donors, and community to experience the future Center first-hand and visualize the positive impact it will have on future generations,” agreed AIASF Executive Director, Stacy Williams.

For more information on Geopogo and its augmented reality solutions for the architecture and design industry, click here. For more information on Magic Leap and its AR hardware solutions, click here.

 




Qualcomm is trying to simplify app creation for AR glasses

The ultimate aim is to make AR more accessible. Ideally, developers will make apps directly available to you through mobile app stores, using glasses tethered to smartphones. You might not see Snapdragon Spaces used for stand-alone glasses, at least not at first.

The manufacturer support will be there. Spaces won’t be widely available until spring 2022, but Qualcomm has lined up partners like Lenovo (including Motorola), Oppo and Xiaomi. Carriers like T-Mobile and NTT DoCoMo will help build “5G experiences” using Spaces. Lenovo will be the first to make use of the technology, pairing its ThinkReality A3 glasses with an unnamed Motorola phone.

It’s too soon to know if Snapdragon Spaces will have a meaningful effect on AR. While this should streamline app work, that will only matter if there are both compelling projects and AR glasses people want to buy. This also won’t be much help for iPhone owners waiting on possible Apple AR devices. Efforts like this might lower some of the barriers, though, and it’s easy to see a flurry of AR software in the near future.

 




Extended Reality – Mixed Reality Versus Augmented Reality

Augmented Reality Defined

Augmented Reality is quickly making its way into a variety of settings. Retailers use it to help customers visualize a product before they buy it. Engineers turn to augmented reality as a way of accessing valuable information about a product without fumbling with physical manuals. With AR, users can embed or overlay elements of the digital world into the physical world.

Tools like ARkit from Apple and Google ARCore even allow users to build their own smartphone immersive experiences. However, it is possible to further enhance AR experiences through things like smart glasses. These overlay the digital content you need to see in the real world in a much more immersive way, without requiring you to hold a phone in front of your face.

Mixed Reality Defined

Mixed Reality is a hybrid of AR and VR (virtual reality), though it goes further than AR when it comes to immersion. Through MR virtual or digital content isn’t just overlaid into the real world; it’s embedded in a way that users can interact with it.

This form of MR is an advanced kind of AR, which makes the digital elements you bring into your environment feel more authentic and realistic. MR can have elements of both virtual and augmented reality within it. However, the major difference is that the focus is on blending everything together. You’re not entirely replacing an environment, or simply augmenting it with new content. Instead, you’re creating an entirely new reality by combining both the physical and digital environment.

Exploring AR and MR

There are numerous differences between AR and MR, but the biggest noticeable aspects are:

  • Device requirements – AR is usable on most smartphones or tablets, with the added option of specialist headsets. However, to provide a MR experience, more power and sensors are required.
  • Realistic interaction – AR offers limited interactivity with the virtualized elements. The computer-generated content can’t interact with the real-world elements users see.

It’s up to you whether to use VR, AR for your project. Each of them is made for particular tasks. For many companies, augmented reality will be one of the easiest ways to enter the world of extended reality. The environment is accessible because you can create applications and tools that work in smartphones, as well as through smart glasses and headsets. However, as the technology available to us continues to evolve, Mixed Reality may also become more accessible.

Many leading companies are experimenting with MR already, though it’s still technically the youngest technology in the XR space.

In manufacturing, an important hurdle to overcome when trying to bring together several emerging technologies in one place is data connectivity. At the Manufacturing Technology Center (MTC) in the UK, they understand this issue all too well and are working to combat it using ATS Bus.

ATS Bus is a platform for their VIVAR (Virtual Instruction, Inspection and Verification using Augmented and/or Virtual Reality) project which investigates “how augmented and virtual reality could be used to enhance the operator experience when viewing work instructions and increase efficiency and accuracy for both instruction delivery and data capture.”

The work orders received are translated by ATS Bus into a standard data format where they are then sent down to the shop floor where ATS Bus translates them again into the required format for use on the Adv (Advanced Display Device) server.

You can read the original article on INFRASI’s website.




As the Metaverse & AR Mature, Will They Fall Into Tech’s Common Silos

As the world of AR and the Metaverse matures, the ability for software and hardware products to integrate with one another becomes a huge factor in the adoption and use of these technologies.

Dan chats with Christine Perey, the founder and principal analyst of Perey Research & Consulting and founder of The AREA, on how history reflects tech’s tendency to embrace operational and hardware silos, and why siloed products cause significant inefficiencies and increase cost.

Abridged Thoughts:

“[Interoperability in the AR world] is the ability for components, software, hardware, services from any vendor, to be able to exchange data without the user needing to concern themselves with who made that part, and so it’s the ability for multiple vendors to combine parts and their customers also to be able to combine parts into new and unique ways and come up with new, innovative solutions that solve a specific problem.

And so the interoperability also allows the market to go to scale because you’re no longer going to be focusing only on one use case or only on one component of the whole system. You can take your component into many, many different pieces of hardware, for example, something I know a lot about, or software; you could take your content and deliver it on any browser, any player.”

– Christine Perey 

 




AR enables efficient remote support – XMReality

One of the greatest examples of AR technology is the popular mobile app Pokémon Go, which allows players to locate and capture Pokémon characters that appear in the real world. In addition to entertainment, augmented reality is also used in other areas, such as marketing, fashion, tourism, and retail.

Overall, the use of AR is growing as mobile devices that are powerful enough to handle AR software become more accessible around the world. However, AR is not a new invention. In fact, the first AR technology was developed back in 1968, when the Harvard computer scientist Ivan Sutherland created an AR head-mounted display system.

Following in Surtherland’s footsteps, lab universities, companies, and national agencies developed AR for wearables and digital displays. But it was not until 2008 that the first commercial AR application was created by German agencies in Munich. They designed a printed magazine ad for a BMW Mini car. When held in front of a computer’s camera, the user was able to control the car on the screen simply by manipulating the magazine ad.

Since then, one of the most successful uses of AR for commercial purposes has been the ability to try on products, such as clothes, jewelry, and even make-up, without having to leave your house. In addition, many tourism apps use AR technology to bring the past to life at historical sites. For example, at Pompeii in Italy, AR can project views of ancient civilizations over today’s ruins. Other examples include neurosurgeons using an AR projection of a 3D brain to aid them in surgeries and airport ground crews wearing AR glasses to see information about cargo containers. Needless to say, the potential of augmented reality is endless.

 

AR enables efficient remote support 

At XMReality, we have embraced augmented reality from the beginning. Founded in 2007 by researchers from the Swedish Defense Research Agency, our first project was to help bomb disposal experts defuse landmines in the field. For six years, we performed advanced contract research in AR for the Swedish Defense Materiel Administration and BAE Systems.

Though we continue to work and innovate in the defense sector, we expanded to help other industries with our remote support solution XMReality Remote Guidance. In remote support calls, you can use the AR feature Hands Overlay to guide your counterpart by overlaying your hand gestures on top of real time video.

This is especially useful when you need to show someone how to turn a screw, explain what cord goes where, or provide other instructions where technical support is needed. And it comes in handy when you need both your hands to give instructions or guide someone through complex tasks.

The user-friendly software and AR technology enables you to improve operational efficiency and quality for processes like audits, maintenance, service, repair, training, and support at production sites, packaging, energy grids or properties. Find more information about how to use remote support in different industries here.

Don’t tell it, show it with AR

In a rapidly growing ​​AR marketplace, we always continue to develop the use of AR technology. To enhance the Hands Overlay experience, we have introduced additional hardware: The Pointpad.

Together with the Hands Overlay, the Pointpad is useful for experts in a helpdesk setup who is using XMReality Remote Guidance from a desktop computer or support stations. This allows you to enhance hand gestures for clear instructions during everyday calls.

Imagine that you are a technician dealing with electricity sub-stations, which include extremely complex industrial installations with myriad switch-gear, screens, and interfaces. When you are restricted to voice only support, you have to rely on the customer to explain what they see in front of them, and you must give them support while acting blind.

By using XMReality and its’ AR technology, you can both see exactly what the customer sees but also guide their hands with your own.  This way you don’t have to trust the customer to explain everything just right, and you don’t need to keep in mind every detail that the customer has said, since you can continuously see it while you and the customer are troubleshooting together. You also don’t need to worry about language barriers and having to say every instruction in the most easily-understood way, since you will use your hands to show the customer what to do with their own. The reduced risk for misunderstandings combined with faster trouble resolution is a great way to achieve happier customers and more efficient processes

You can read the original blog post by XMReality here.




Case Study of AR Technology Hirschmann Automotive and RealWear

The Challenge

With seven factories worldwide, Hirschmann Automotive needed a more cost-effective and time-efficient knowledge-transfer approach to maintaining and repairing equipment than flying experts around the world.

“If something isn’t working properly at one of our plants, technicians have to call our headquarters in Austria. And even then, they might not be able to solve the problem. Then it becomes an issue of flying someone around the world to assess the problem in person”

That’s when Fliri and his team looked at virtual and augmented reality solutions. Unfortunately, most devices were too delicate for the production plant environment — until Fliri discovered the RealWear HMT-1.

The Solution

Deploying RealWear running Cisco Webex Expert on Demand allowed Hirschmann Automotive to streamline collaboration and reduce equipment downtime.

The Results

  • Reduced travel needs and costs
  • Improved maintenance and repair response
  • Streamlined information accessibility and collaboration
  • Increased first-time fix rates
  • Shortened first-time resolution time

Hands-Free Use Case

  • Remote mentoring

Readers can download the case study for free on RealWear’s website




How Assisted Reality differs from Augmented Reality

In Industry 4.0, Augmented Reality (AR) and Virtual Reality (VR) often get the spotlight as the next great leap in boosting worker productivity. But these X-Reality (XR) technologies aren’t always practical when used as manufacturing or frontline tools.

Enter another aR: assisted Reality.

What is assisted reality? How does it differ from augmented reality?

Assisted Reality gives you access to the right information right when you need it, allowing you to have full situational awareness. Unlike AR, it’s a reality first, digital second experience. Assisted Reality allows a person to view a screen within immediate field of vision, hands free. Information is not overlaid with real-world view.

Let’s explore this by looking at heads-up displays (HUDs). HUDs in vehicles give an extra layer of relevant information without hampering vision or distracting the driver. The driver doesn’t have to shift their gaze to the dashboard. They can keep their eyes on what’s most important (the road) and have both hands free to control their vehicle.

Assisted reality devices can also be wearable to be more practical in certain situations.

  • Headsets with micro-displays: A small but high-resolution screen that’s positioned in front of the user’s eye. With the appropriate focal depth, a half-inch display can look like a 7-inch tablet held at arm’s length.
  • Smart glasses: Worn like ordinary glasses, purpose-built smart glasses project images directly onto the lenses (note: most assisted reality use cases are not dependent on SLAM (simultaneous location and mapping) computer vision.
  • RealWear devices with assisted reality technology are leading the industrial field’s digital transformation with hands-free, Android-based headsets, designed specifically with safety in mind.
  • RealWear devices with assisted reality technology are leading the industrial field’s digital transformation with hands-free, Android-based headsets, designed specifically with safety in mind.

How is assisted reality different from augmented reality?

Assisted reality differs from augmented reality in a key way. Assisted reality gives users access to relevant information in their immediate field of view (FoV), augmented reality uses computer-generated, digital content to create an interactive experience within real-world environments.

Read the full article on the RealWear blog here.




After consumer dismay, Magic Leap’s new AR headset targets enterprises instead

  • Magic Leap raised US$500 million off a US$2 billion valuation and unveiled its Magic Leap 2 AR headset that is set for release in 2022

 

  • Chief executive Peggy Johnson said the headset would be the industry’s “smallest and lightest device built for enterprise adoption”

 

  • Much like Microsoft’s Hololens, the goal for this headset is to help remote workers connect and train away from physical office

 

When Magic Leap was founded 11 years ago, the company set out to be a pioneer in augmented reality and mixed reality technologies. It even received almost US$3 billion to fund its first consumer-friendly AR headset, the Magic Leap One, which was launched in 2018 after a long delay. The US$2,300-priced headset eventually flopped, having sold only 6,000 units — a figure far removed from the one-million sales goal set initially.

The startup eventually narrowed its focus to professional applications, tried unsuccessfully to sell the company, and fired more than half of its workforce during the challenging economic climate of 2020. Plans to make mixed reality glasses mainstream were pushed back.

Amidst this whirlwind of shifting expectations, co-founder and CEO Rony Abovitz decided to leave the company in July 2020. Replaced by Peggy Johnson, the company then unveiled the Magic Leap 2, dubbing it as the industry’s smallest and lightest device built for enterprise, “designed to increase business adoption of AR.”

Johnson, formerly with Microsoft, revealed the new headset during a CNBC interview and in a blog post this past week. In a sign of investor confidence in the burgeoning enterprise AR space, Magic Leap further announced that it has raised US$500 million in funding at a post-money valuation of roughly US$2 billion. “The new capital will further Magic Leap’s focus on delivering best-in-class AR solutions including the roll-out of its second-generation product, Magic Leap 2, in 2022.”

Additionally, as claimed by Johnson, “this more advanced headset boasts critical updates that make it more immersive and even more comfortable, with leading optics, the largest field of view in the industry, and dimming – a first-to-market innovation that enables the headset to be used in brightly lit settings, in addition to a significantly smaller and lighter form factor.”

 




Augmented Reality in Healthcare

The short article mentions a number of providers, some of whom are AREA members one of which is Microsoft’s HoloLens 2. The HoloLens 2 smartglasses can connect to remote experts, holographically overlay patient data, and consult MRI images in 3D. They combine existing features—such as high-resolution images, better performance, and eye-tracking—to deliver an interesting full package.

In conjunction with Case Western Reserve University and the Cleveland Clinic, Microsoft has developed a HoloLens app, HoloAnatomy, that allows medical students to see every aspect of the human body, from muscles to veins, in 3D on a dynamic holographic model. Microsoft is not alone in this space.

Facebook has the wireless Oculus Quest 2 VR headset, just one of multiple types that Oculus is producing. As more technology and applications become available, exciting new opportunities await healthcare professionals.

Accuvein uses projection-based AR in its handheld device that illuminates peripheral veins on the skin’s surface with the goal of improving venipuncture.

Amazon and Intel are getting into this space, as is a Chinese company called Nreal (a former AREA member) which is developing mixed reality technology in the 5G era.

A mixed reality viewer from Brainlab, whose software and hardware create and enhance data, aims to improve critical surgeries and make the operating room more efficient.

The article does state that “down the road, AR healthcare apps could help surgeons become more efficient at surgeries”, however, that is very much a reality already, as many customers are already using Augmented Reality in surgery, such as AREA member Vuzix whose smartglasses have been used in surgery. See News Pixee Medical Surgery Solution Has Received Clearance to Enter U.S. Knee Surgery Market with Vuzix AR M400 Smart Glasses

“The worldwide AR and VR market will experience continued growth, thanks to a slowly warming reception and an increase in the number of new devices arriving to market,” says Ramon Llamas, research director, IDC’s Augmented and Virtual Reality team.

 




TeamViewer partners with Google Cloud to deliver enterprise Augmented Reality solutions on Google Glass

Through this partnership, TeamViewer and Google Cloud are co-developing and co-marketing enterprise AR solutions built on Google Cloud to better serve customer needs.

 

The first jointly developed solution ‘Assisted Order Picking’ is a hands-free order picking application that leverages Google Glass Enterprise Edition 2 smart glasses equipped with TeamViewer’s vision picking software from its Frontline suite, focusing on improving omnichannel fulfillment for grocery stores and retailers.

Carrie Tharp, VP Retail & Consumer at Google Cloud: “Shopping behavior has dramatically changed, especially in the current pandemic, and retailers are having to hire new associates while rethinking their picking and fulfillment processes.  Retailers are looking for off-the-shelf technology they can implement today that will also prepare them for long term success as they develop new approaches to the modern store.”

“We are excited to introduce this first solution with Google Cloud as retailers and grocers struggle to adjust to omnichannel shopping trends.  Our goal is to provide them the tools and technology to drive a higher level of service to their customers and to streamline their ever-changing business models,” says Alfredo Patron, executive vice president of business development at TeamViewer.  “As a Google Cloud partner, we are now developing solutions to improve both the front and back-end of retail operations as a first step.  In the very near future, we are looking to extend our partnership and apply this same technology stack to improve manufacturing, field service and supply chain processes within other industries.”

Connected to a retailers’ or grocers’ order fulfillment systems to update inventory in real-time, associates receive the information they need to fulfill the orders within the display of Google Glass.  This heads-up display capability enables associates to use both hands to locate and pick the correct items, improving pick rates anywhere from 15-40 percent.  At the same time, it provides new data insights to retailers servicing the increasing demand from customers for buy-online and pick-up in store (BOPIS) and same-day delivery options.

This announcement builds on a partnership initiated with Upskill, a pioneer in industrial AR solutions, that was acquired by TeamViewer in March 2021.

For an animated explanation of how the solution works, check out this video.